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The Amoeba Project is a distributed project on distributed operating systems.
The project, which started as the author’s PhD research project in 1978 [8], is
now a joint project of CW! and Vrije Universiteit in Amsterdam. About a dozen
people are working on the project, led by prof.dr. A.S. Tanenbaum (VU) and
the author (CWI). This article describes the interprocess communication facili-
ties and protection mechanisms of the Amoeba system. Part 2, which will
appear in the next Newsletter, will be devoted to the services provided by the
Amoeba Distributed Operating System.

1. INTRODUCTION

Distributed information processing has long been practised by living organ-
isms. The human brain, one of the most complicated living organs, functions
in a highly distributed manner; different parts of the brain have specialised to
perform different functions, such as speech and vision. Yet there does not
seem to be any central control in the brain, ‘consciousness’ cannot be pin-
pointed to one specific group of brain cells. Not a single function of the brain
seems to be impaired when any cell in the brain dies. The individual cells in
living organisms die, are replaced by others, and yet, the organism as a whole
continues to function uninterruptedly. Most life forms use distributed control
of some form or another. Even simple life forms, such as the one-celled
amoebee —which have no single ‘command centre’ to decide where to go and
how to get there—are somehow capable of co-ordinated action.

Imitating nature in all aspects, man has finally begun to incorporate the
principles of distributed information processing in his most complicated
artifacts, computers. In their desire to construct better, faster and more reli-
able information processing systems, researchers are building networks of
many computers which co-operate to preform their task more quickly and
more reliably.

The technology for connecting computers is available; many varieties of
local-area networks are on the market, and most are fast and reliable.

21



However, the infrastructure which is necessary to manage and control distri-
buted information has hardly been developed. The subject of our research at
CWI is the design of such an infrastructure, a model that allows people to
understand distributed computer systems and describe their actions.

Distributed computing is a new research area, one that introduces a whole
range of new problems to be solved, problems of managing information sys-
tems without global and up-to-date information of their state, of finding ways
to prevent inconsistencies in large bodies of data caused by unsynchronised
simultaneous changes. Mechanisms must be found for protecting information
against unauthorised access. The potential in distributed systems of much
greater reliability must be used by designing services that can survive failures
of individual components of the system. For some of these problems. solu-
tions had already been found in traditional, centralised operating systems:
other problems did not even exist before the advent of distributed computing.

Take the exploitation of parallelism, for instance: If there are two different
programs to be run, two processors are evidently more powerful than one: the
work can be divided. But this is not so evident if there is only one program to
be run. It is then much harder to put the available parallelism to use. Tradi-
tional system design methods and software engineering principles do not pro-
vide adequate methods of splitting up algorithms in independent parts which
can be executed in parallel. Building distributed systems is easy. Using them
is hard.

Potentially, systems built up of many processors are more reliable than trad-
itional computers with a single cpu. If the single processor of a centralised sys-
tem fails, the system comes to a halt. In a distributed system. this does not
have to be the case. Every single component of the system can be replicated.
so that. no matter what component fails, a subsystem is left behind that can be
made to work. If one processing element fails. others can take over the work.
If a disk fails. a copy of the information can still be available on another disk.

As it turns out, designing software that exploits this fault-tolerant property
of such a configuration is surprisingly difficult. Standard techniques for
software development are all based on the assumption that the underlying
hardware is infallible. This is a perfectly proper assumption in traditional sys-
tems, where, if part of the system fails, the whole system stops working, but it
is no longer true in a distributed system.

Distributed systems research concentrates on the problem of structuring the
hardware and designing the operating system software in such a way that we
can profit from the architecture’s two most important potentials. parallelism
and fault tolerance.

Distributed control plays a central role in ‘avoiding single points of failure.”
Specialisation and control cannot be obtained through a simple hierarchical
structure as exemplified by most armies. Again, the analogy with nature
teaches us that extensive hierarchical systems can exist with a control structure
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that provides enough redundancy to survive ‘simple’ failures.

The realisation of distributed control in all parts of the system is a key goal
of the research: Any centralised part will be a potential bottleneck when the
system grows, and a liability in the face of crashes. It is because of the impor-
tance of distributed control that we have named the distributed operating sys-
tem emerging from our research Amoeba, after that one-celled creature using
distributed control to move about.

2. THE AMOEBA DISTRIBUTED OPERATING SYSTEM

The price of processors and memory is decreasing at an incredible rate. Extra-
polating from the current trend, it is likely that a single board containing a
powerful cpu, a substantial fraction of a megabyte of memory, and a fast net-
work interface will be available for a manufacturing cost of a few hundred dol-
lars in 1990. Our intention, therefore, has been to do research on the architec-
ture and software of machines built up of a large number of such modules.

In particular, we envision three classes of machines: (1) personal computers
consisting of a high-quality bit-mapped display and a few processor-memory
modules; (2) departmental machines consisting of hundreds of such modules;
and (3) large mainframes consisting of thousands of them. The primary
difference between these machines is the number of modules, rather than the
type of the modules. In principle, any of these machines can be gracefully
increased in size to improve performance by adding new modules or decreased
in size to allow removal and repair of defective modules. The software run-
ning on the various machines should be in essence identical. Furthermore, it
should be possible to connect different machines together to form even larger
machines and to partition existing machines into disjoint pieces when neces-
sary, all in a way transparent to the user level software.

This model is superior to the oft-proposed ‘Personal Computer Model’ (as
exemplified by XEROX PARC [5]) in a number of ways. In the personal com-
puter model, each user has a dedicated minicomputer, complete with disks, in
the office, or at home. Unfortunately, when people work together on large
projects, having numerous local file systems can lead to multiple, inconsistent
copies of many files. Also, the noise generated by disks in every office, and the
maintenance problems generated by having machines spread all over many
buildings can be annoying.

Furthermore, computer usage is very ‘bursty’: most of the time the user does
not need any computing power, but once in a while he may need a very large
amount of computing power for a short time (e.g., when recompiling a pro-
gram consisting of 100 files after changing a basic shared declaration). The
fifth-generation computer we propose is especially well suited to bursty compu-
tation. When a user has a heavy computation to do, an appropriate number
of processor-memory modules are temporarily assigned to him. When the
computation is completed, they are returned to the idle pool for use by other
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users. This contrasts with the Cambridge Distributed Operating System [9].
which also has a ‘processor bank,” but assigns a processor to a user for the
duration of a login session.

A machine of the type described above requires radically different system
software than existing machines. Not only must the operating system
effectively use and manage a very large number of processors, but the com-
munication and protection aspects are very different from those of existing sys-
tems.

Traditional networks and distributed systems are based on the concept of
two processes OF processors communicating via connections. The connections
are typically managed by a hierarchy of complex protocols. usually leading to
complex software and extreme inefficiency. (An effective transfer rate of 0.5
megabit/sec over a 10 megabit/sec local network, which is only 5% utilisation.
is frequently barely achievable.)

We reject this traditional approach of viewing a distributed system as a col-
lection of discrete processes communicating via multilayer (e.g.. 1S0) protocols.
not only because it is inefficient, but because it puts too much emphasis on
specific processes, and by inference. on processors. Instead we propose to base
the software design on a different conceptual model—the object model. In this
model. the system deals with abstract objects, each of which has some set of
abstract operations that can be performed on it.

Associated with each object are one or more ‘capabilities’ [3] which are used
to control access to the object, both in terms of who may use the object and
what operations he may perform on it. At the user level. the basic system
primitive is performing an operation on an object, rather than such things as
establishing connections, sending and receiving messages. and closing connec-
tions. For example, a typical object is the file, with operations to read and
write portions of it.

The object model is well-known in the programming languages community
under the name of ‘abstract data type' [6). This model is especially well-suited
to a distributed system, because in many cases an abstract data type can be
implemented on one of the processor-memory modules described above.
When a user process executes one of the visible functions in an abstract data
type. the system arranges for the necessary underlying message transport from
the user’s machine to that of the abstract data type and back. The header of
the message can specify which operation is to be performed on which object.
This arrangement gives a very clear separation between users and objects, and
makes it impossible for a user to directly inspect the representation of an
abstract data type by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
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gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is convenient to implement the object model in terms of clients (users)
who send messages to services [2,9,1]. A service is defined by a set of com-
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. The design of these servers and the design of the protocols they use
form an important part of the system software of our proposed fifth-generation
computers.

As an example of the problems that must be solved, consider a file server.
Among other design issues that must be dealt with are how and where infor-
mation is stored, how and when it is moved, how it is backed up, how con-
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com-
municate, what happens when one of them fails, how is a server process organ-
ised internally for both reliability and high performance, and so on. Analo-
gous questions arise for all the other servers that comprise the basic system
software.

3. COMMUNICATION PRIMITIVES AND PROTOCOLS

In the literature about computer networks, one finds much discussion of the
150 Reference Model for Open Systems Interconnection (0s1) [12] these days.
It is our belief that the price that must be paid in terms of complexity and per-
formance in order to achieve an ‘open’ system in the 1S0 sense is much too
high, so we have developed a much simpler set of communication primitives,
which we will now describe.

Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The
bottom layer is the Physical Layer. and deals with the electrical, mechanical
and similar aspects of the network hardware. The next layer is the Port Layer,
and deals with the location of services, the transport of (32K byte) datagrams
(packets whose delivery is not guaranteed) from source to destination and
enforces the protection mechanism, which will be discussed in the next section.
On top of this we have a layer that deals with the reliable transport of
bounded length (32K byte) requests and replies between client and server. We
have called this layer the Transaction Layer. The final layer has to do with the
semantics of the requests and replies, for example, given that one can talk to
the file server, what commands does it understand. The bottom three layers
(Physical, Port, and Transaction) are implemented by the kernel and hardware;
only the Transaction Layer interface is visible to users. User programs execute
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in the fourth layer, the Application Layer.

The main function of the Transaction Layer is to provide an end-to-end
message service built on top of the underlying datagram service, the main
difference being that the former uses timers and acknowledgements to guaran-
tee delivery whereas the latter does not.

The Transaction Layer protocol is straightforward. A server process makes a
call to getreq (an abbreviation of get request) to tell the Transaction Layer it is
ready to receive a request from a client. The client sends a request by calling
trans (for transaction), which makes the Transaction Layer send a request and
wait until a reply comes back from the server. The client is blocked until this
reply arrives. The server, after carrying out the request, returns a reply by a
call to putrep.

When the client does a trans, a packet, or sequence of packets, containing
the request is sent to the server, the client is blocked, and a timer is started
(inside the Transaction Layer). If the server does not acknowledge receipt of
the request packet before the timer expires (usually by sending the reply. but
in some special cases by sending a separate acknowledgement packet). the
Transaction Layer retransmits the packet again and restarts the timer. When
the reply finally comes in, the client sends back an acknowledgement (possibly
piggybacked onto the next request packet) to allow the server to release any
resources, such as buffers, that were acquired for this transaction. Under nor-
mal circumstances, reading a long file, for example, consists of the sequence

From client: request for block 0
From server: here is block 0
From client: acknowledgement for block 0 and request for block 1
From server: here is block 1
elc.

The protocol can handle the situation of a server crashing and being rebooted
quite easily since each request contains the identity of the file to be read and
the position in the file to start reading. Between requests, the server has no
‘activation record’ or other table entry whose loss during a crash causes the
server to forget which files were open, erc.. because no concept of an open file
or a current position in a file exists on the server’s side. Each new request is
completely self-contained. Of course for efficiency reasons. a server may keep
a cache of frequently accessed i-nodes. file blocks erc., but these are not essen-
tial and their loss during a crash will merely slow the server down slightly
while they are being dynamically refreshed after a reboot.

The Port Layer is responsible for the speedy transmission of 32K byte
datagrams. The Port Layer need only do this reasonably reliably. and does
not have to make an effort to guarantee the correct delivery of every datagram.
This is the responsibility of the Transaction Layer. Our results show that,
compared to other approaches, our’s leads to significantly higher transmission
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speeds, due to simpler protocols.

Theoretically, very high speeds are achievable in modern local-area net-
works. A typical transfer rate of a modern local-area network is 500,000
bytes/sec point-to-point if there were no protocol overhead. In practice, how-
ever, speeds of 100,000 bytes per second between user processes have rarely
been achieved. Obviously, to achieve higher transmission rates, the overhead
of the protocol must be kept very low indeed. To do this, a large datagram
size was chosen for the Port Layer, which has to split up the datagrams into
small packets that the network hardware can cope with. This approach allows
the implementor of the Port Layer to exploit the possibilities that the hardware
has to offer to obtain an efficient stream of packets.

Two versions of the algorithm have now been implemented. The one
described above has been implemented on the Amoeba distributed operating
system, and achieves over 300,000 bytes a second from user process to user
process (using M68000s and a Pronet* ring). A second implementation runs
under UNIX,T using 2K byte datagrams, which gets 90,000 bytes/sec across the
network between two VAX-750s running a normal load of work, without caus-
ing a significant load on the system itself.

4. PORTS
Every service has one or more ports [7] to which client processes can send mes-
sages to contact the service. Ports consist of large numbers, typically 48 bits,
which are known only to the server processes that comprise the service, and to
the service’s clients. For a public service, such as the system file service, the
port will be generally made known to all users. The ports used by an ordinary
user process will, in general, be kept secret. Knowledge of a port is taken by
the system as prima facie evidence that the sender has a right to communicate
with the service. Of course the service is not required to carry out work for
clients just because they know the port, for example, the public file service may
refuse to read or write files for clients lacking account numbers, appropriate
authorisation, efc.

Communication using ports basically works as follows. One, or several
server processes make a call to

getreq(serverport, - - - ),
a client, wishing to have some service rendered, calls
trans(serverport, - - - ),

The client’s Transaction Layer generates a (unique) reply port for the client,

* PRONET is a trademark of Proteon Associates, Inc.
+ UNiIX is a Trademark of AT&T Bell Laboratories.
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finds an active server process on serverport and sends a message containing
{serverport, replyport, - - - }

to the server. The server processes the request, and returns a reply in a mes-
sage

{replyport, serverport, - - - }

The two ports provide a unique identification of the transaction.

The difference between this approach and that taken by conventional inter-
process communication protocols is that, in principle, messages are addressed
to a service name or port, not to a machine, or a process. Obviously. in
Amoeba, clients never need to know where a service is implemented. or how
many server processes there are. This is none of their business; it is part of
the implementation of the ‘abstract data type’ that is the service.

The transaction mechanisms, however, must deliver requests and replies to
specific processes on specific machines. Obviously, inside the Port
Layer—which is, after all, responsible for message delivery—ports must be
mapped onto networks addresses. So, when a client calls rrans. the client’s
Port Layer must find a network node where a getreq on the matching port is
outstanding.

In the local-area network, the technique for locating a port is the following.
The client broadcasts a tiny message, saying ‘anyone listening on port x7’. to
which servers listening on that port reply ‘port x is at machine y!” A similar
technique is used for locating the client for the reply message.

Locating ports is inefficient. It can be sped up, however, by a simple tech-
nique which finds many useful applications in distributed systems: the hinr. In
this particular case, hints are stored in a little table of (port, network address)
pairs in every host and they say in effect: ‘If you’re looking for port x, why don’t
you try network address y?' 1f the hint works, a port has been located without
sending any extra messages; if not, a message is returned saying that the port
is not known at that address. In the latter case, the hint is scratched out, and
a broadcast locate is done. Incoming packets contain a source address, so they
provide a free hint for their source port.

Although the port mechanism provides a convenient way to provide partial
authentication of clients (‘if you know the port, you may at least talk to the
service’), it does not deal with the authentication of servers. The primitive
operations offered by the system are trans, putreq and getrep. Since everyone
knows the port of the file server, as an example, how does one ensure that mal-
icious users do not execute gerregs on the file server’s port. in effect imper-
sonating the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may getreq from which port [2, 11].

28



We reject this strategy because some machines, e.g., personal computers con-
nected to larger multimodule systems, may not be trustworthy, and also
because we believe that by making the kernel as small as possible, we can
enhance the reliability of the system as a whole. Instead, we have chosen a
different solution that can be implemented in either hardware or software.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the vLst chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where F is a (publicly-known) one-way function
[13,10,4] performed by the F-box. The one-way function has the property
that given G it is a straightforward computation to find P, but that given P,
finding G is so difficult that the only approach is to try every possible G to see
which one produces P. If P and G contain sufficient bits, this approach can be
made to take millions of years on the world’s largest supercomputer, thus mak-
ing it effectively impossible to find G given only P. Note that a one-way func-
tion differs from a cryptographic transformation in that the latter must have
an inverse to be useful, but the former has been carefully chosen so that no
inverse can be found.

Using the one-way F-box, the server authentication can be handled in a sim-
ple way, illustrated in FIGURE I. Each server chooses a get-port. G, and com-
putes the corresponding put-port, P. The get-port is kept secret; the put-port
is distributed to potential clients, or, in the case of public servers, is published.
When the server is ready to accept client requests, it does a getreq(G, cap, req).
The F-box then computes P = F(G) and waits for packets containing P to
arrive. When one arrives, it is given to the appropriate process. To send a
packet to the server, the client merely does trans(cap, req, rep). Cap is a capa-
bility*, giving the identity of the object the user wants to access, which con-
tains the port field, P, of the service managing the object. This will cause a
datagram to be sent by the local F-box with P in the destination-port field of
the header. The F-box on the sender’s side does not perform any transforma-
tion on the P field of the outgoing packet.

* Capabilities are explained in the next section.
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INTRUDER

Intruder doesn’t
know G
®
F-box also says -box actually listens
send to P for P = F(G)
®
Client says Server says
send to P listen for G
CLIENT SERVER
FIGURE .

Now let us consider the system from an intruder’s point of view. To imper-
sonate a server, the intruder must do getreq(G, --- ). However, G is a well-
kept secret, and is never transmitted on the network. Since we have assumed
that G cannot be deduced from P (the one-way property of F) and that the
intruder cannot circumvent the F-box, he cannot intercept packets not
intended for him. Replies from the server to the client are protected the same
way: The client’s Transaction Layer picks a get-port for the reply, say. G’. and
the client's F-box transforms G’ into P’ = F(G’) in the request packet for the
server to use as the put-port to send the reply to.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G’), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G’), and F(S), respectively. The first is used by the receiver’s
F-box to admit only packets for which the corresponding getreq has been
done, the second is used as the put-port for the reply, and the third can be
used to authenticate the sender, since only the true owner of the signature will
know what number to put in the third field to ensure that the publicly-known
F(S) comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys-
tem designers considerable latitude for choosing various policies. The
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mechanism is sufficiently flexible and general that it should be possible to put
it into hardware without precluding many as-yet-unthought-of operating sys-
tems to be designed in the future.

5. CAPABILITIES

In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralised in a
single monolithic ‘capability manager’. In our proposed scheme, each object is
managed by some service, which is a user (as opposed to kernel) program, and
which understands the capabilities for its objects.

SERVER OBJECT RIGHTS CHECK

FIGURE 2.

A capability typically consists of four fields, as illustrated in FIGURE 2:

1. The put-port of the service that manages the object

2. An Object Number meaningful only to the service managing the object
3. A Rights Field, which contains a I bit for each permitted operation

4. A Check Field for protecting each object

The basic model of how capabilities are used can be illustrated by a simple
example: a client wishes to create a file using the file service, write some data
into the file, and then give another client permission to read (but not modify)
the file just written. To start with, the client sends a message to the file
service’s put-port specifying that a file is to be created. The request might con-
tain a file name, account number and similar attributes, depending on the
exact nature of the file service. The server would then pick a random number,
store this number in its object table, and insert it into the newly-formed object
capability. The reply would contain this capability for the newly created
(empty) file.

To write the file, the client would send a message containing the capability
and some data. When the write request arrived at the file server process, the
server would normally use the object number contained in the capability as as
index into its tables to find the object. For a Unix-like file server, the object
number would be the i-node number, which could be used to locate the i-node.
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Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine. and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between read, write, delete, and other operations that may be
performed on objects.

However, it can easily be modified to provide that distinction. In the
modified version, when a file (object) is created, the check field is computed by
applying a one-way function to Object Number, Rights Field, and the Ran-
dom Number stored with the object. When the capability is returned for use.
the server uses the object number to find the file table and hence the random
number. If the result of recomputing the Check Field leads to the Check Field
in the capability, it is almost assuredly valid, and the Rights Field can be
believed. Clearly, an encryption function that mixes the bits thoroughly is
required to ensure that tampering with the Rights Field also affects the Check
Field.

When this modified protection system is used, the owner of the object can
easily give an exact copy of the capability to another process by just sending it
the bit pattern, but passing, say, read-only access, is harder. To accomplish
this task, the process must send the capability back to the server with a bit-
map saying which bits to strip off the Rights Field. By choosing the bit mask
carefully, the capability owner can mask out any operations that the recipient
is not permitted to carry out.
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